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ABSTRACT

The stable age distribution of a life table reflects
survivorship discounted by population growth rate. Graphical
techniques may be employed to estimate the growth rate of
the population from partial information on a population's
age distribution and mortality rates for a few age classes.
When a time varying harvest or some other perturbation
causes departures from the stable age structure, stable
popélation-theory no longer applies, but a kind of convergence
can still be demonstrated. We develop a formula which may be
used to estimate vital rates by comparison of an observed
and a predicted age distribution when the history.of the

absolute (not per capita) harvests is known.
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"INTRODUCTION

A population's age distribution reflects a history
of the population birth rates corrected for the history of
age specific survival rates. The presence of an individual
aged x at time t arises through birth at time t-x coupled
with survival at least until age x%. Relative abundances
of individuals in age classes X and y must, therefore,
indicate relationships between the birth rates at times
t-x and t-y and the probabilities of survival till ages
x and y at those times. Accordingly, appropriate analysis
of an age distribution should shed some light on othex
aspects of the population's dynamics--notably birth rates
and death rates.

This fact is of significance in wildlife or fisheries
management, and in certain areas of field ecology, because
relgtive measures, such as age distributions are more
readily estimated from samples than are absolute measures,
such as direct estimates of pooulation size.

Some of the internal relationships involving age
distributions and various population parameters and age
specific parameters in a stable population are well known.
For example, chapters 2 and 4 of Coale's (1972) monograph
develop the mathematics in a very clear fashion. That

examination of a population structure may yield practical



information about a vopulation is an established idea in
fisheries and wildlife work. Relative abundances of young
animals are loosely interpretted as indices of the growth
or decline of populations. The relationship between certain
mortality rates and population composition is exploited
in the ingenious survey-removal method of population
assessment (Chapman and Murphy, 1965). And, of course,
many of the same phenomena are at the heart of various
sorts of widely used sequential analyses of population
structures, termed virtual population analysis, in
fisheries management (Gulland: 1965; Pope, 1972).

Many existing applications of the analyéis-pf age
structures employ notation which obscures the relationship
to the formulations of mathematical demography. Indeed,
some of the methods introduce inaccuracies through neglect
of one or the other of population grdwth rate, natural
mortality rates, or transients in the population age
distribution. The purposes of this praper are to review the
problem from a general demographic perspective, to
demonstrate the unappreciated power of the methods in some
otherwise conventional applications to stable population
analysis, and to break new ground in the analysis of age

structures under a fluctuating realized life table.



Two examoles--framed in the context of commonly
eéncountered practical problems--will be explored. One is
the estimation of population growth rate from sparse knowledge
of survival rates and age structure in a vopulation in
stable age distribution. The second is the reconstruction
of some missing elements of the life table from knowledge
of the current age distribution and a history of variable

harvests.




I. ASSESSING POPULATION STATUS IN THE ABSENCE OF FECUNDITY DATA
!

The two obvious means of assessing the growth rate
of a population are by direct measurements of population
size over a suitable time interval, or by calculation from
the fecundity and survivorship schedule of the applicable
life table. The two methods, in principle will yield the
Same answer, provided the Population's age distribution
has converged to a distribution Teasconably close to the
stable age distribution associated with the life table.
Often enough, neither method ¢an be satisfactorily applied
to populations of interest,notably, stocks of pelagic
animals. -

The usual method of estimating population size in
a fishery is by'balculation from data on the catch rate
per unit of fishing effort. The results, of course, are
confounded by changes in fishing technology, changes in
the economics of the fishery, and changes in the availability
of fish to the fishery (as distinct from changes in
numbers) . The method is reviewed by Gulland (1969) .

A second method of estimating population size in
& population that is inaccessible to direct census is by
calculation from the rate of recapture of a known number

of marked individuals relative to the capture of unmarked



ones. This method, which is more usually applied to
terrestrial animals, assumes uniform mixing of the marked
individuals into the population at large. Furthermore,
the results are conféunded by the rate of mortality
during the period intervening between release and
recapture. Indeed, where the marked individuals can be
aéed, this method serves better as a means of calculating
mortality rates over the respective age classes, than as
-a means of estimating population. The method is reviewed
by Seber (1973).

Growth rate may be calculated from the life table

according to Lotka's equation
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where r is the per capita population growth rate, m(x) is
the age specific schedule of fecundity (usually female
births per female, the male segment of the population

is modeled differently), and 1{x) is the raté of survival
from birth to age x. The classic development of this
formula is reviewed by Lotka (1939). In practise, a
discrete time analog is employed in place of the continuous
functions, for real data. When reproduction is seasonal,

a discrete time model may, in any case, be more appropriate.



A thorough, modern treatment of demographic methods is
given in Keyfitz (1969).

It is only rarely that birth rate data might readily
be gathered for a pelagic p0pu1§tion. Usually, measures of
pregnancy rates or egg burden are the most that can be
expected . The survivorships of the younger age classes
are almost always beyond reach of feasible measurement.

So much so, in fact, that it is common to £ill in this
missing element in a 1ife table by assuming that r is

some particular value (usually 0), and then calculating

the rate of immature survivorship that is consistent with
this value, given the rest of the life table. Little of
practical significance is gained by this exerciéé, other
than perhaps a test of internal consistency or Plausibility,
for the growth rate is the more telling statistic.

Interestingly, the internal relationships connecting
age specific parameters to population parameters permit
calculation of r from an incomplete life table, provided
at least some elements of the stable age distribution are
known. The purpose of this section is to develop the calculation
for the realistic case where neither birth rates nor
early survival rates are available, énd where only certain

age classes are accesible to reliable sampling.



THE STABLE AGE DISTRIBUTION

The stable age distribution is an expression of the
survivorship schedule, aistorted exponentially with age
according to the rate of increase of the population.

That is, the frequency of age class x is pProportional to
the simple product 6f the survivorship to age x and the
population's birth rate at the time x units ago. If the
population has been growing exponentially at rate x, the
bigth rate at time (t~x) must be e *F times the present
population birth rate. Upon normalization, thérefore, we

[ 4
obtain as the formula for c(x), the frequency of age class x,
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The denominator in this expression, incidentally, must be

Cf??ﬂ) - . (1)

the inverse of the mean percapita birth rate in the population.
For this reason, it is not necessary to measure births
directly.

From (2} we see that the growth rate, r, is determined
uniquely by the survivorship schedule, 1(x)}, and the stable
age distribution é?x). Given 1(x) and é?x), r may be

computed iteratively from equation {2). Alternatively, as



noted by Bourgeois-Pichat (1957), r may be obtained from
the coefficient of the exponential regression of
(c{x)/1(x)) against age. Here we will show that even less
information than the complete c(x) and 1(x) schedules

will suffice.



MORTALITY RATES AND A PARTIALLY SPECIFIED SURVIVORSHIP SCHEDULE

The age class specific mortality rates acting over some
span may be estimated from a feasible mark and recapture
program. Consider, for example, an age stratified extension
of the multiple mark-recapture method of Seber (1965} ana
Joily (1965) . Minimally, this requires two marking episodes
separated bylthe span of one age class, followed by one census
an equivalent interval later.

At time t a set of individuals are marked and released
in thé population, and the ages and numbers of individuals
are recorded. Let the number of individuals marked and
released, classified in age categories spanning afunit time
interval, be given by the vector V-

At time t+l a second set of individuals is marked in
a manner that will be distinguishable from the first, and
aged and released., Let the number of individuals, by age
class, in this release be given by the vector Viel-

It is not necessary that the distribution of ages
in either of these sets of marked individuals be the same,
or that they be representative of the actual age distribution
in the population. Neither must all age classes be represented.
Let us assume that age classes a through z are reliably
sampled by the available gear, and that these age classes

are included in the release.
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At time t+2 the population is sampled in a fashion
that will not bias the relative capture rates among age
classes a through z. The numbers of individuals marked
at time t+1 and captured at time t+2, grouped according to
their current ages at time t+2 are recorded in the vector
Uoq - The numbers of individuals recaptured from among those
marked at time t are recorded similarly in vector u, -

The fraction of the Vi, b+l individuals marked at age
x at time t+l that are recaptured as one age class older
individuals at time t+2, and tallied as ux+l,t+l .
depends on the efficiency of the recapture procedure
{as influenced by such factors as effort and dispgrsal)
and on the mortaiity q, jprevailing between age élass
X and x+1l. Thus

o - V s (1- ?,c)
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where s is an unknown proportionality constant depending
on the recapture efficiency.

The fraction of the vy individuals marked at age

P

x at time t and recaptured as twe age class older

individuals at time t+2, and tallied as Ust2,t 7



depends on the mortality over age classes x and x+1 as

well as the recapture effeciency. Thus

Uocfth = V’*’-,é ° G_Zr)(’— ?wl) i
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Since both sets of marked individuals are recaptured
in the same sampling, there is no question that the effort
component of the recapture efficiency is the same in
equation (5) as in (3) and (4). We also require, however,
that the dispersion component1be the same in order for
5 to have the same value for both sets of equationsf This
may be assured in a variety of ways. i

If mixing of the released individuals into the
population is essentially complete after one time interval
has elapsed, then both releases will be equally dispersed
by the time of the recapture. This would be rather too much
to assume for almost any pelagic stock {(and it is just this
problem that poses a major obstacle to the use of mark
and recapture vrograms for estimates of population size).
In special cases one might be able to estimate the diference

in dispersal in the two releases and correct accordingly,

but this information will not usually be available.



Alternatively, if the recapture program is conducted
over a sufficiently extensive area, we may disregard
dispersal altogether, for then the individual's position
becomes irrelevant to the probability of recapture. This
will hold true for the raw recapture data if the recapture
effort is well distributed over stations. If certain regions
are over-represented in the recapture pProgram, a measure
of relative effort per station may readily be used to
nogmalize the recapture data. Note that now we need not
assumé that the marked individuals are perfectly mixed
into the population, for we are concerned only with the
relative recapture rates of the different age classes, and
not with the capture rates of marked relative to‘z

unmarked individuals.

Dividing equation (5) by (4), we obtain after

rearrangement

(-2 = Yres Froew
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where all the terms on the right hand side of the eguation
are -measured quantities. Thus, the mark and recapture

program provides sufficient information to calculate
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the mortality rates from one age class to the next, for

all age classes from a through (z-1}.

Now, for all integer valued age classes older than

a, the survivorship is given by

z-o,

b - b 70ﬂ ZJ) ()
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Thus for any 'integenfvalued age between a and z, we can, on
the basis of the mortality data obtained from the mark
and recapture program, calculate the relative survivorship.

The value of 1(a) remains an unknown proportionality

* constant.



CALCULATION OF THE GROWTH RATE

The relative abundances of age classes a through z
in the sampling . at time t+2 may be used as an estimate of
the relative age distribution over these age classes. Let
n be the vector of abundances of individuals, by age class,
in the sampling. Then, for integer valued ages between a

and z, if the sampled population is in stable age distribution

we may write

CS?X) = :j iiﬁ 2 (g).

- where g is an unknown proportionality constant which
absorbs the ratio between the segment of the population

that is between ages a to z and the total population)

and includes also a normalization factor.

Substituting equations (8) and (7) into equation (2)

x -t

e_rx g{a) 7 (- ?_,)

=

© J’g‘ﬁi{j (5)



Rearranging, and taking the logarithm of both sides vields
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Values of the left hand side of the equation, for

integer valued ages between a and (z-1) , may be calculated
from the ma;k and recapture results. Values in the
logarithm on the right hand side of the equation are
independent of x. Accordingly, regression of values for
the left hand side of the equation against age will yield
a straight line with a slope of negative r, the paramefer
we wished to calculate; the various unknown scale factors
get ccllected into one product, the value of which is
determined by the intercept.

Departures of the actual age distribution from the
st;ble age distribution will be detectable as departures
of the actual points from a straight line. Errors in the
.calculation of mortalities arising from fear to year
variations in mortality rates of all age classes will
compound geometrically in the denominator of the left

hand side of the equation and the error will thus appear .

in the slope of the regression, but will not, in itself



distort the shape of the line. If, for example, all the
aprarent survival fractions, (l—qj) are off by a
multiplicative factor €, the calculated r will be off hy
an additive factor 1n(e).

Of course, actual fluctuations in mortality rates
‘over time will cause the population age distribution to
deviate from the stable age distribution. If these
fluctuations are short term, and are random in time,
they will merely introduce a scatter about the straight
line without throwing off the slope by much. Systematic
trends in time, however, will cause the shape of the 1iné
to change. Keyfitz, Nagnur and Sharma (1967) discuss
the analysis of age distributions in populatiégs where

the per capita birth rate has been changing either

linearly or quadratically over time.
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CONSTANT MORTALITIES

If, for the span of age classes considered, the
mortality rate does not change with age, a further simpli-

fication is possible. Then, all the qj are identical, so

equation (10) becomes

A (1= 74[4 61 ) - /&( A("f)}"'mytb

@)
) - AG‘?) v
=x by _’_,5\___./4 j ,Q

oy

where q is the age independent mortality rate applying to
this span of age classes, and }\ is the annual factor of
increase, obtained as e’ . Equation (11) shows that the
regression of ln(nx) against x should yield a straight
line, with a slope of (—%i .

Here the linearity displayed in the actual data will
serve as a test both cof the assumption of stable age distribution

and of the assumption of constant mortality rates within
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the span of ages considered. Such plots have been utilized
in wildlife management as a means to estimate the mortality
rate q where the factor of increase is assumed equal to

one, corresponding to zero population growth (Chapman and
Robson, 1960). Obviously, if g were estimated independently,.
we need not make assumptions about A , but instead would .
calculate it from the observed slope.

When neither A nor q are known, there is still useful
information residing in the measurable ratio ( fZ%—ﬁ obtained
from the log plot. Let us assume that the span of ages for
which the constant mortality rate applies includes the ages
within which all {(or almost all) reproduction occurs. Assume
further that fedundity during these ages is fairly constan£
with age, so that we may utilize the geometric series
approximation to the characteristic equation of the Leslie

matrix:

AT G- - mé =0 o

where m is the mean fecundity, & 1is the age at first
reproduction, and 2; is the survivorship until the age at

first reproduction. This may be rearranged to



———
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Thus we see that the ratio ——g’ is utilizeable even if

we cannot initially separate the mortality from the growth

component. Data on &« and m are often available, but
admittedly it will be a rare situation where Jai is

known with sufficient precision to complete the calculation
is equation (13). Nevertheless, even the ability to

compute values of the factor of population increase
contingent upon an unknown value of survivorship to first
reproduction may be useful: we can generally at least

set plausib;e_limits on the value for éi and this will then
yield the plausible range of A from equation (13). For
example, in assessing the sustainability of a harvest, thig
method could be used to determine whether the presuned

replacement yield is within the limits of known constraints

on the dynamics of the population,
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IT. ESTIMATING LIFE HISTORY PARAMETERS FROM TRANSIENT

AGE DISTRIBUTIONS

When a population; total birth rate is not following
an exponential trajectory through time, whether because of
variations in the realized vital rates, or because of some
past perturbations of the age structure, the simple formula,
eq (2), relating survivorships to elements of the age
distribution vector, via the population growth rate, no
longer applies. It will remain true, however, that the
age distribution provides information concerning the vital
rétes; but that information is now more difficult to
extract.

Two important theorems bear on the interpretation
of age distributions. The classic proof of convérgence of
age distributions under a constant life table {Sharpe and
Lotka, 1911) implies that once this convergence has been
achieved, the age distribution can be calculated from just
the fecundity and survivorship schedules. This relationship
gives rise, for example, to our equation (2). The second
theorem proves that populations experiencing the same
history of time-varying life tables will converge in their
age distributions, though these age distributions will

themselves be time dépendent (Lopez, 1961).



The second theorem is less widely known than the
first among ecologists and wildlife managers, though it
has an important consequence that is identical to a
feature that follows from the classic theorem. In fact,
the classic theorem is a special case of Lopez' proof.
The noteworthy property demonstrated in either case is
that the initial age distribution becomes essentially
irrelevant to the current age distribution, as time
progresses. Thus, even with time varying life tables,

a sufficiently long time sequence of vital rates—-age-
specific fecundity and mortality schedules--will
suffice to determine the age distribution.

Accordingly, mathematical manivulation of fhe age
distribution must reveal some constraints on the sequence
of vital rates. If enough properties of the sequence of
vital rates are already known, the constraints provided
by the analysis of the age distribution can finally yield
a solution for the vital rates themselves.

The convergence properties exhibitted by continuous
time population models do not invariably carry over to the
analogous discrete time Leslie matrix models. The precise
condition for convergence of age structure in the
matrix version is that there be no common divisor greater

than one for the set of ages at which reproduction
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occurs (Lopez, 1961; Sykes, 1969). This condition is
almost certain to be met in annual Leslie matrix models
for long lived  repeatedly breeding organisms. For
example, if any two successive age classes are
reproductively active, these two ages must be relatively

prime.
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CONVERGENCE OF AGE DISTRIBUTION UNDER A VARIABLE HARVEST

Consider a population subject o schedules of
natural mortality and fecundity which are encapsulated
in the Leslie matrix, A, which is constant over time.

In the usual notation

3 wa W
fr o @ -rTe e

- _ (] F:_ o . 0' o
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where my is the effective fecundity of age class i,

and P; i5\the probabilitx of survival from age i to age
it1.

Beginfiing at some time 0 imagine that an annual
harvest is instituted, and that the number of individuals
harvested in year t, by age class, is recorded in the
vector Et » which may vary from year to year. Thus the
realized vital rates in vear t, which project the
population vector to time £+l, are encapsulated in the
matrix ﬁt' where the fecundity vector is related to the

fecundity vector of A, the harvest vector ht » and the



population vector n,_ , according to

t

7Y
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and the survival rate vector is related to the survival

rate vector of A, the harvest vector, and the population

vector, according to

(%
]DLJ.t N

- - (1@9

assuming that the harvest is taken at the end of each
time interval.
We might project the population vector from time

0 to time t by multiplying by the succession of matrices:

WA

n =;t{ A _ A

A
+ ST S N © "
am
but this would be very awkward, owing to the involvement
of all the intermediate population vectors in the succession
of matrices, and it seems unlikely that the initial

population vector will be known in many important practical

cases.
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Alternatively, we may note that in each time interval
the population grows according to A and then is reduced

by the current harvest:

n

AV\ — L\ (l@)

k- Tk kK

Thus, aﬁplying this formula recursively from time 0 to t,

we have

(19)

Intuitively, we see that the final population vector
is a sum of as many component vectors as there were harvests;
The initial vector is projected through t applications of
the constant matrix of natural vital rates, A. We subtract
from this vector the respective harvests, where the final
effect of each harvest is given by projecting this phantom
population through the number of time units that elapsed
since it was taken.

We observe that the initial population vector figures
only once in the expansion in equation (19) , and that is

in the term where the constant projection matrix is applied to
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it t times. From classical stable population theory,

we know that as t becomes sufficiently large, the vector
projected by Atgo-will converge on the stable age
distribution associated with the matrix A, regardless

of the age distribution in the initial vector. Formally

An = vet
7 (ro);

where c* is the stable age distribution of A (it is the
eigenvector associated with the dominant eigenvalue of
A) calculated as the discrete time equivalent of equation
(2) , and v is a scalar multiplier. Only the value of
the scalar is determined by the initial population: it
may be calculated as the summed reproductive value in
the initial population, multiplied by At , where X is
the dominant eigenvalue of matrix A.

Thus the w variables that would be unknown if the

initial population were unknown, collapse to a single

unknown in their effect on the present population vector:

t-‘ ( k 3
E-hr—

W= ve - i A h

K=o

-

(:u)
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CALIBRATING THE LIFE TABLE FROM THE AGE DISTRIBUTION OF
A HARVESTED POPULATION

It is often very difficult to obtain estimates of
population size, for the reasons discussed in section I,
but reliable estimates of the relative abundances of
several age classes may be readily available. Similarly,
programs of mark and recapture may reveal patterns of
relative survival rates, and examination of the frequencies
of pregnancy in aged samples may revéal relative fecundities
(but not the crucial rate of survival from birth until
the first census).

Let us then imagine that we have trustworthy estimates
for the relative magnitudes of all the elements of a Leslie
matrix of natural vital rates, so the entire Leslie matrix is
known except for a proportionality constant 8. Thus where
B is the matrix of relative rates, the actual Leslie matrix

A is given by

A= pb
* (22)

And let the population vector n, be known only to a
proportionality constant g; and then perhaps only for

some age classes:
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* ()

where the vector of age distripution is available from
data, but the multiplier g is unknown.

For a number of commercially cropped
populations ﬁe_have good estimates of the history of the
magnitudes and age compositions of the harvests. Indeed,
the esfimates of harvest may be the most secure knowledge
we have about many of these populations.

Substituting in equation (21) we have
1
(e-k=)__ (b))
-3 1By,

K=o

a e = \/(gt Ist:sz*'

T

(=)

Now, the stable age distribution c¢* must be the eigenvector
of A, but since multiplying a matrix by a scalar does not
alter its eigenvectors, ¢* may be calculated simply as

the dominant eigenvector of the known matrix B.

Thus, equation (24) contains but three unknowns:
these are the scalars g, v, and R. If the estimated values
for the age distribution at time t are reliable for at
least three age classes, then we will have enough equations

to solve for the unknown, provided the equations are

P
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linearly independent. If there has been at least some
harvest, this condition is satisfied.

The form of the solution is easily seen, for example,
by treating vBt as one unknown and g as another. Simple

algebraic manipulation of three eguations of the form

3¢, = Op) "-- "G’ P-"’\"ja e h..a-b

~ | . } (25)
. )

{where a; ci,t and all the b's are knowns) will leave us
with one polynomial equation of order t-1 in g , and with
the other unknowns canceled out. |

From Descartes' rule of signs, there will be only
one real positive root for the polynomial:"This root may
readily be obtained by a simplé\iterative technique,
such as Newton®s method, yielding the value B that completes
our knowledge of the life table. Where more equations
than necessary are in hand, the overdetermined system may
be "fit" statistically, much as we fit a straight line
to the data in the method of section I, rather than
simply solving for the unknown. The degree of fit will

then provide some estimate of internal consistency.
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In general, the missing parameter in an otherwise
known Leslie matrix probably will not be a multiplier
that is applied to the entire matrix. This case was
explored here merely for the algebraic convenience which
permitted explicit formulation of equation (24). In real
cases it is more likely that survival rates will be
known, but that a proportionality constant to be applied
to the fecundity vwvector, or perhaps to the survival rates
of just the immatures, will be miésing. Then the mathematics
will be less esthetic, ~’'and the steps past equation (21)
,will require recourse to iterative computer techniqﬁes,
but the logic of the solution remains the same.

The key feature is the step in equation (205 which
replaces the w unknowns of the initial population vector
with one, freeing up the remaining equations to determine
unknowns which are of greater interest. Indeed, if the
relative abundances of a sufficient number of age classes
in c, can reliably be estimated, it becomes possible,
by this means, to solve simuitaneously for more than one
missing parameter of the Leslie matrix.

Two assumptions of the calculations outlined in
this section may not fully be met in some applications.

One is that the time span of the history of the harvests



is long enough to guarantee the convergence of the
contribution of the initial population vector to stable
form. In practise, it appears that convergence is gquite
rapid, most especially since the initial vector may not
be terribly far from stable form. Should any doubts
arise on this score in a particular application, the
validity of the identity in equation (20) may be explored
in simulatiqns by initializing n, with a plausible

range of age distributions, and examining the divergence
of Atgo from some multiple of c*. The propagation of
the resultant error through the ensuing caléulations is
easily traced, allowing some estimates of confidence
intervals on the final parameter that is solved for.

A second problem arises if the natural component
of the vital rates, that is A, varies significantly over
time. Provided enough is known about the time sequence
of the {EAQE » the essential point, that the initial
age distribution need not be known remains true. That
is, the formulation, while hot so simple as equation (19ﬂ,
still will include the initial population vector in
a single term only, namely At-lAt—Z""AleEo , and
the age distribution of the ensuing contribution is
essentially a property of the sequence of A's rather than

of n, » as per Lopez' proof. Accordingly, carefully
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constructed computer algorithms, even in this less
favorable situation, can extract information about wvital
rates from the current age distribution and a record of

harvests.

If there is suspicion of a slow systematic change
in At » as would ccur with density dependent changes if
the populations size is gradually changing, it may be
advantageous to truncate the population history so as to
MinyMmize the degree of change or to restrict the change
toc a period when the conseguences on At are best
understood. Then the new time 0 will not be the onset of
exploitation but simply the starting time of the analysis
sequence. Since the initial population is in any case
treated as an unknown, this shift is unimportant. What
is important is that the sequence remain long enough for
convergence of the initial population vector's contribution
to the age distribution. Reflection on this strategy

shows, incidentally, that the most recent harvest records

will tend to be most critical in the calculations.



RELATED METHODOLOGIES

The estimation of population parameters from a time
sequence of harvests may be carried out via techniques of
comparing observed and predicted age compositions in the
harvests themselves (Doubleday, 1975; Free and Beddington,
1973). In these analyses, no a priori knowledge of actual
age distributions in the population is presumed. Instead,
where there are k recoxrded harvests of a w age class
‘population, the harvests constitute a set of k-w observations,
which are fit by adjusting a set of population parameters
and a set of selectivity parameters. The selectivity
parameters fof a given year form the ve;tor that converts
the age distribution of the harvest to the age distribution
in the actual population. If the selectivity changes over
time, in response for example to market and gear chénges,
there can, at worst, be a total of k-w selectivity parameters,
which would leave no degrees of freedom for the fitting of
population parameters. In practise, it is assumed that
selectivity is.constant for some period of time, or for
some blocks of age classes, thus restoring a more favorable
relation between the number of observations and the number
unknowns.

If these assumptions about the selectivity of the
historical harvests are valid, this technique of fitting
the harvest record is superior te the method developed in

this paper in that each harvest contributes additional
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degrees of freedom, whereas we propose only one final
comparison of an observed versus a predicted age distribution.
1f, on the other hand, the assumptions about historical
harvest selectivities seem dubious (or inaccessible_to
evaluation), the method proposed in this paper permits the
information content of the historical harvests to contribute
to the calculation, without incorporation of objectionable
assumptions, provided we can obtain an independent estimate
of the final age distribution (equivalent to obtaining

an independent estimate of the harvest selectivities applYing
to the final harvesﬁ).

It has been observed in numerical exploration of the
method of simulataneously fitting selectivities and population
parameters that the residual is insenesitive to. the age
'composition of the initial population (Free and Beddington,
1979). We can now understand this as a consequence of the
same convergence propoerty noted in equation (18). The
similarity of £he underlying mathematics in the two technigues
suggests a hybrid approach for situations where there is
a long historical record of harvests alone, and a shorter
more recent record of information (such as independent
assessments of actual population composition) beariné on
selectivities. Then we could use the theoretical convergence
argument developed in this paper to gét'the population from

the begining of the period of recorded harvests to the onset
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of the period of availability of selectivity or age composition
data, and begin accumulating residuals at that point after

the manner of models that attempt to fit selectivity parameters

as well.
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CONCLUSIONS

RAge distributions contain information about the history
of birth and death rates in the pbpulation. Where the per
capita age specific rates are independent of history, the
age distribution converges to a characteristic form which
may be calculated directly from the life table. This
dependence, alternatively, permits computation of some 1life
table parameters from the observed age distribution. Two
examples are presented to illustrate the calculation of
population growth rate from some minimal data including a
partial age distribution.

Where the vital rates are history depedent, the age
distribution of the population dépends on that history ,
though certain convergence Properties remain. For the case
'where the history dependence arises via a known history
of time varying harvest (known only as absolute rather than
per capita rates) we develop a model which utilizes the
consequent partial convergence to caleculate 1life table
parameters from the record of harvests and a final observed
partial age diétribution. This method is related to another
technique of sequential population analysis which proceeds
via comparison of observed and expected harvest structures.
The latter technique is preferable where harvest selectivities
are understooda,our new method is the only pption where the

history of harvest selectivities is questionable, but one
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independent assessment of the population age distribution
is available. In the interdediate situation where the record
of harvest information is longer than the record of selectivity

information, a hybrid analysis can be constructeqd.
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